March $9^{\text {th }}, 2020$

Mr. Jeremy Jordan
 Fortress Railing Products
 1720 North First Street
 Garland, TX 75040

$\mathrm{Re}: \quad$ Structural Connection Details
Fe26 2" \& 3" Guard Post to Wood Deck
State of California, United States of America

Jeremy,

Per your request, Eclipse Engineering has reviewed the attached typical details of the Fe26 2" and 3" post connection to a typical wood deck. We find that the details meet or exceed the requirements of the 2019 California Building Code.

We have not reviewed the structural integrity of the decking, structural deck members, or their connections. Eclipse Engineering holds no responsibility for the design of the components of the deck or the global stability of the deck.

If site specific calculations are required, please contact Eclipse Engineering.

Sincerely,
Eclipse Engineering, Inc.

Sushil Shenoy, P.E.
Project Manager

Client: Fortress Railing - 2" Post

Project: Deck Connection Detail

Lnput	
Loading=	50 plf
Trib=	5.5 ft
Height $=$	42 in
Beam Width=	5.5 in
Screw Diameter=	0.25 in
$166 \mathrm{lb} / \mathrm{in}$	
Screw Withdrawal Capacity=	$1165 \mathrm{lb} / \mathrm{in}$
Tensile Strength of Screw=	3.45 in
Moment Couple Distance=	3
Number of Screws=	1.6 (Ten Min.)
Duration Factor (Cd)	5 in
Screw Embedment=	

Output	
Minimum Edge Distance (3 x Diameter) $=$	0.75 in
Max Moment (Trib x Loading x Height) $=$	$11550 \mathrm{lb}-\mathrm{in}$
Withdrawal Resistance Required $=$	3347.826 lb
Withdrawal Resistance Provided $=$	3984
PASS/FAIL for Withdrawal $=$	PASS
Tensile Strength Required $=$	3347.826
Tensile Strength Provided $=$	3495
PASS/FAIL for Tensile Strength $=$	PASS

Client:	Fortress Railing - 3" Post
Project:	Deck Connection Detail

Input	
Loading $=$	50 plf
Trib=	9.5 ft
Height=	42 in
Beam Width $=$	5.5 in
Screw Diameter=	0.25 in
Screw Withdrawal Capacity=	$166 \mathrm{lb} / \mathrm{in}$
Tensile Strength of Screw=	$1165 \mathrm{lb} / \mathrm{in}$
Number of Screws=	4
Moment Couple Distance=	4.5 in
Duration Factor (Cd)	1.6 (Ten Min)
Screw Embedment=	5 in

Output	
Minimum Edge Distance (3x Diameter) $=$	0.75 in
Max Moment (Trib \times Loading \times Height)	19950 lb -in
Withdrawal Resistance Required $=$	4433.3333 lb
Withdrawal Resistance Provided=	5312
PASS/FAIL for Withdrawal=	PASS
Tensile Strength Required=	
Tensile Strength Provided=	4433
PASS/FAIL for Tensile Strength=	PASS

Acceptable Fortress Railing Fe ${ }^{26} \mathbf{2 " ~}^{\prime \prime}$ Post and Guardrail Mounting Applications in CA

$\mathrm{Fe}^{26} 2$ Inch Post Top Mount To Southern Yellow Pine or Douglas Fir-Larch Joist Mounted Parallel

$\mathrm{Fe}^{26} 2$ Inch Post with through bolt \& washers on bottom

Note: Min (3) Simpson SDS 25412 Screws into each side of blocking

Note: Maximum Tributary Area = 5'-6"
$\mathrm{Fe}^{26} 2$ Inch Post Top Mount To Southern Pine or Douglas Fir-Larch Joist Mounted Perpendicular

Note: "Fortress Railing Products has only designed the connection from the railing to the deck and is not responsible for the design of the deck itself"

Acceptable Fortress Railing Fe ${ }^{26}$ 3" Post and Guardrail Mounting Applications in CA

$\mathrm{Fe}^{26} 3$ Inch Post with through bolt \& washers on bottom

Note: Min (3) Simpson SDS 25412 Screws into each side of blocking

Note: Maximum Tributary Area = $8^{\prime}-0^{\prime \prime}$

